skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Du, Xiaodong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Combined heavy metals and chlorinated organic compounds have been widely reported in industrial wastewater. Yet, simultaneous removal of these contaminants remains challenging. In this study, a bi-functional composite (TNTs@AC) was prepared based on commercial titanium dioxide (TiO2) and activated carbon (AC) and tested for simultaneous removal of Cd(II) and 2-chlorophenol (2-CP). Under the action of high temperature and pressure, TiO2 was transformed into titanate nanotubes (TNTs) and bound to AC, and in the meanwhile, nanoscale AC particles were patched on the TNTs. In the mixed TNTs and AC phases, TNTs was responsible for taking up Cd(II), whereas AC for 2-CP. As such, the relative adsorption capacities of the composite for Cd(II) and 2-CP varied with the mass ratio of TiO2:AC, with decent uptakes for both chemicals in the mass ratio rage of 1:3 ~1:1. TNTs@AC (prepared at TiO2:AC = 1:1) demonstrated fast sorption kinetics and high sorption capacities for both Cd(II) and 2-CP, with a maximum Langmuir adsorption capacity of 109 and 52 mg/g, respectively, in the single solute 
    more » « less